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Abstract - The Synthetic Aperture Radar (SAR) is a 

type of radar capable of high-resolution coherent 

Imaging. To produce images from SAR data, an image 

forming algorithm must be used. The Backprojection 

Algorithm is known for generating high resolution images 

at the expense of computational intensity. Due to this 

drawback, the Backprojection Algorithm has never been 

widely adopted for real time applications or 

implementation in Small, Weight and Power (SWaP) 

devices. The first contribution of this work is the analysis 

and fixed-point conversion of the Backprojection 

Algorithm while providing high-quality images. The 

second key contribution of this work is the 

implementation of the Backprojection algorithm in a 

System-on-Chip (SoC) Field Programmable Gate Array 

(FPGA) device. A proof of concept was done on a Zybo 

Z7-10 board where it was observed the resulting 512x512 

image had a signal-to-noise ratio of 99.21 dB. This result 

was achieved in 959ms, representing a speedup of 500x 

over the original software implementation.  

I. INTRODUCTION 

This work is integrated in the FCT project “Synthetic 

Aperture Radar Robust Reconfigurable Optimized 

Computing Architecture” (SARRROCA, PTDC/EEI-

HAC/31819/2017). The overarching goal of this project is to 

promote mass adoption of Synthetic Aperture Radar (SAR) 

imagery and its deployment on aircraft by providing reliable, 

portable and lighter computational on-board systems to 

produce real-time SAR images. This will be achieved by 

coupling known optimization techniques with the flexibility, 

power efficiency and performance of System-on-Chip (Soc) 

Field-Programable Gate Arrays (FPGA).  

The SAR is a complex imaging data collection system 

with diverse sensing applications. This type of radar uses the 

relative motion between itself and the target to generate high 

resolution 2-D or 3-D images[1], making it ideal for mounting 

on moving platforms such as satellites, aircrafts or drones 

[2][3].   

The Backprojection algorithm is one of the most well-

suited for use in non-ideal conditions, as its working principle 

overcomes most of the obstacles that others can only 

compensate for. Being a high-quality image formation 

algorithm also implies being a complex and resource-

intensive algorithm [1]. 

The purpose of this work is to develop a 

Hardware/Software implementation of the Backprojection 

Algorithm capable of producing a 512x512 pixels image per 

second using a small, lightweight, power-efficient device. 

The optimization process is based on fixed-point conversion, 

word-length optimization, and algorithm rescheduling 

coupled with a pipeline architecture. 

 

II. BACKGROUND AND STATE OF THE ART 

SAR 

The SAR is a type of coherent radar capable of high-

resolution coherent imaging. This type of radar uses the 

relative motion between itself and the target to generate high 

resolution 2-D or 3-D images, making it ideal for mounting 

on moving platforms such as satellites, aircrafts or drones [2]. 

Due to being an active sensor, i.e. a sensor that provides its 

own source of illumination, a SAR can operate during day or 

night. By selecting the operating frequency correctly, the 

microwave signal can penetrate clouds, haze, rain and fog and 

precipitation with very little attenuation, allowing SAR to 

operate in weather conditions that make the use of visible 

light/infrared systems unviable. SAR has been successfully 

used over a wide range of applications, including 

surveillance, forest, sea, snow and ice monitoring, mining, oil 

pollution monitoring, oceanography and classification of 

terrain [2][4][3]. 

  

Figure 1 - SAR's functioning principle [9] 
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The SAR works by periodically emitting pulses with a 

well-defined spectrum and then collecting the echoes 

reflected back to the antenna at regular time intervals, 

resulting in samples containing information regarding 

amplitude and phase [4][3][5]. Allying the samples with the 

precise time at which they were recorded creates a data set 

that can be passed to an imaging forming algorithm to obtain 

the final image. 

Backprojection Algorithm 

To create SAR images an image formation algorithm is 

necessary, which reads the collected raw data and defines an 

output image [1]. The Backprojection Algorithm is a time-

domain algorithm [2] sometimes referred to as the gold 

standard in terms of quality for SAR image forming [2][6]. It 

makes little assumptions  and can work in a range of modes 

and geometries [5][1], with its biggest drawback being the 

high computational cost [1][2].  

The Global Backprojection Algorithm uses the following 

parameters as inputs: carrier frequency; range from platform 

to centre of the swath; range bin resolution; image pixel 

spacing; number of pulses; number of samples per pulse; 

output image dimensions; platform locations (aperture 

points); samples from the radar. To calculate the final value 

for each pixel, the Backprojection Algorithm executes the 

following steps for every pair (pixel<->pulse) in the order 

they are presented [2][6]: 

1. Calculate the distance between the SAR and the pixel. 

2. Convert the previously calculated distance into a position 

(range bin) in the sample data set. 

3. Compute sample value by linear interpolation between the 

sample of the position obtained before and the sample in 

the next position. The interpolation can be described by 

Eq.1: 

 

𝑔𝑥,𝑦(𝑟𝑘) = 

𝑔(𝑛) +
𝑔(𝑛 + 1) − 𝑔(𝑛)

𝑟(𝑛 + 1) − 𝑟(𝑛)
∗ (𝑟𝑘 − 𝑟(𝑛)) 

(1) 

4. Compute the values for the matched filter described by the 

Eq.2, with 𝑑𝑟 calculated according to Eq.3:  

 𝑒𝑖.𝜔.2.|𝑟𝑘⃗⃗⃗⃗  | = cos(2. 𝜔. 𝑑𝑟) + 𝑖𝑠𝑒𝑛(2. 𝜔. 𝑑𝑟) (2) 

   

 𝑑𝑟 = √(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2

− 𝑟𝑐 

(3) 

5. Scale the sampled values by the matched filter to obtain 

the pulse’s contribution. 

6. Accumulate the contribution for the pixel. End cycle. 

The mathematical formulation for this algorithm is 

described in Eq.4: 

 𝑓(𝑥, 𝑦) = ∑𝑔𝑥,𝑦(𝑟𝑘 , 𝜃𝑘). 𝑒
𝑖.𝜔.2.|𝑟𝑘⃗⃗⃗⃗  |

𝑘

 (4(4) 

 

 

Table 1 - Meaning of Backprojection variables 

𝑓(𝑥, 𝑦) Output of Algorithm, final value of pixel (x, 

y) 

𝑔(𝑛) Radar sample in range bin 

𝑔(𝑛 + 1) Radar sample in adjacent range bin after 

𝑔𝑥,𝑦(𝑟𝑘 , 𝜃𝑘) Reflection received by radar at 𝑟𝑘 at 𝜃𝑘 

𝜔 Angular velocity of radar waveform 

𝑟(𝑛) Corresponding range to bin 

𝑟(𝑛 + 1) Corresponding range to adjacent bin after 

𝑥, 𝑦, 𝑧 Coordinates of the pixel 

𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 Coordinates of the radar 

𝜃𝑘 Aperture point 

𝑟𝑘 Range from pixel (x,y) to aperture point 𝜃𝑘 

The pseudocode for this implementation is presented in 

figure 2.  

 

Figure 2 - Pseudocode of the Backprojection Algorithm [7] 

Image Quality Assessment 

The Signal-to-Noise-Ratio (SNR) metric was chosen to 

evaluate the quality of the output image and it is calculated 

using Eq.5 [2]. 

 𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
∑ |𝑠𝑘|

2𝑁
𝑘=1

∑ |𝑠𝑘 − 𝑛𝑘|
2𝑁

𝑘=1

) 
(           (5) 

 

where the 𝑠𝑘 and 𝑛𝑘 terms represent the reference and output 

image values of the k-th element respectively, and N 

represents the number of values to be compared. 

A. Reconfigurable Hardware 

The family of devices that best combines the flexibility of 

a generic purpose CPU with the reconfigurable high-speed 

computing fabrics hardware results from the fusion of a SoC 

with a FPGA device [2]. The FPGA provides the configurable 

high-speed computing fabric while the SoC architecture 

guarantees: tight coupling between components; the existence 

of a microcontroller or microprocessor; the existence of 

external memories or connectors for external memories; a 

range of peripheral ports [8][9]. 

Zybo Z7-10 

This work was developed to be implemented in a Zybo 

Z7-10 board containing a Zynq 7000 device from Xilinx.inc,  
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an external DDR3 memory with capacity for 1GB and I/O 

peripherals [10]. The Zynq 7000 is composed of a Processing 

System (PS), featuring an ARM Cortex-A9 dual-core 

processor, and a PL block. The PL is a Xilinx 7-series FPGA. 

The resources available are shown in table 2. 

Table 2 - Main resources in the PL of the Zybo Z7-10 

LUT Elements Flipflops DSP BRAM Slice 

17 600 35 200 80 60  4400 

The schematic of the APSoC (All Programmable SoC) is 

shown in figure 3. 

 

Figure 3 - Overview of the Zybo's APSoc Architecture [10] 

The board was selected due to its embedded architecture, 

reconfigurable capabilities, and low power consumption. 

B. Numeric Formats 

The design of embedded systems usually starts at the 

algorithmic level where an execution model is created from 

the general concept of an algorithm. The development at this 

stage in the design process is made invariably using the 

Floating-Point numeric format since it provides the best 

precision of all formats and is natively supported in most 

Personal Computer (PC) systems [11]. After the initial phase, 

design constraints change drastically due to the target system 

changing from a common PC system to an embedded system. 

In the new target, the use of a fixed-point format is known to 

allow drastic savings in the traditional cost metrics: silicon 

area, power consumption and latency/throughput 

[11][12][13]. 

C. Approximate Computing Techniques 

There are operations in the algorithm that do not have a 

standard implementation in a fixed-point format. To 

overcome this limitation, new implementations were made 

using methods capable of producing approximate results. The 

methods are studied with two purposes: to choose a method 

for software implementation and to choose a method for 

hardware implementation. The operations in question and the 

methods chosen to approximate them are in table 3. 

Table 3 - Approximation methods used in both implementations 

 Platform 

Operation Software Hardware 

Square Root Newton-

Raphson[14] 

Binary restoring square 

root extraction[15] 

Cosine & Sine CORDIC[16] CORDIC 

 

III. OPTIMIZATION METHODOLOGY 

A. Algorithm Profiling 

The first step in the optimization of the Backprojection 

algorithm is to identify the most time-consuming instructions 

of the algorithm, as these will be the ones with the higher 

potential for acceleration. Table 4 details the CPU present in 

the target device, along with the relevant configuration 

options 

Table 4 - Target device Specifications and Configuration 

CPU Operating 

system 

Multi-

Threading 

Compilation  

flags 

ARM Cortex-A9 Bare metal No -O3 

The profiling in the target system was performed using the 

xil_time.h library functions. The total execution time 

achieved was of 481s, the rest of the results are presented in 

figure 4. 

 

Figure 4 - Profiling results of the Backprojection Algorithm 

It can be concluded that the Cosine and Sine operations 

should be the focus of the optimization process, as these are 

responsible for 91% of the processing time. These findings 

correspond to the conclusions of previous works [5].  

A first proposition for the optimized system architecture 

is to have the Cosine and Sine operations implemented in the 

PL of the SoC while the rest of the algorithm still executes in 

the CPU. However, this architecture’s execution time would 

still be far from the initial goal defined in the introduction of 

this work. This is due primarily to the fact that a cycle of the 

algorithm has too many instructions to allow a serial 

execution in the CPU to be efficient.  
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B. Hardware/Software Partition 

To achieve the initial goal of total execution time below 

the one second mark, most, if not all, of the algorithm should 

be executed in the PL because of the limitations of the PS 

system. A system partition is proposed with the following 

characteristics: 

Table 5 - Proposed system partition 

PS 

Initialization of AXI-DMA modules; 

Control of the read and write operations to the DDR 

memory. 

PL 

Calculus of the Distance between the Satellite and the 

pixels; 

Calculus of the matched filter values relative to the 

distances calculated before; 

Sample selection using the calculated Distances; 

Sample linear interpolation; 

Complex multiplication between the samples and the 

matched filter; 

Accumulation of the products of the complex 

multiplication. 

Now it is possible to pipeline all the algorithm’s 

operations, achieving a higher throughput. The working 

frequency was chosen to allow the target system to achieve 

the desired execution time of 1 second. Solving eq. 30 and 31: 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 

( 𝑁º 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 +  𝑁º 𝐶𝑦𝑐𝑙𝑒𝑠)/𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 
       (6) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =  

(0? + 134 217 728 )/ 𝑥 = 1𝑠 
(7) 

We obtain a minimum frequency of 135 MHz. However, 

the closest possible clock frequency allowed in the target 

device is 140 MHz. Although the number of pipeline stages 

is unknown at this point, we can disregard it for these 

calculations, has its impact has no significance. Initially, for 

a clock frequency of 140MHz the circuit did not achieve the 

timing requirements. In the combinatorial logic part of the 

circuit, these issues were solved though the placement of 

pipeline stages, leaving the communications and memory 

accesses as the potential limiting factors. 

C. Word-Length Optimization 

To optimize a circuit, it is fundamental to choose the right 

fixed-point format for its signals as this decision has a great 

impact over the resources allocated and in achieving the 

timing requirements of the circuit.  

The original program is executed while collecting 

information about the interval of values each variable can 

take. With these results a final number of bits can be defined 

for the integer part of each signal. To choose the right length 

for the decimal part of the format it was necessary to develop 

a new software implementation of the Backprojection 

algorithm using fixed point. Due to the complexity of the 

relation between the attained SNR and the length of the 

decimal part of the variables, this part of the study was made 

by trial and error. Considering that every variable’s fixed-

point format can be deducted from the variable’s relation to 

the input variables, the latter were split in two groups: 

• Variables belonging to the calculation of the distance 

between the Satellite and a pixel. (satellite positions, pixel 

positions, Pythagorean theorem variables, sample 

selection variables); 

• Variables belonging to the Filter and Samples (samples, 

matched filter, interpolation coefficients, complex 

multiplication variables, accumulation variables). 

This new implementation of the algorithm was executed 

several times using different size combinations for the 

variables. The integer part of the variables was fixed while the 

decimal part was chosen to occupy the remaining bits. It was 

concluded that to achieve the quality minimum of 100dB of 

SNR while minimizing resource utilization, the best size 

combination is:  

Table 6 - Word-length of variables after optimization 

Var Size Format 

Distance 40 15Q25 

Data/Filter 24 2Q22 

This combination achieves an SNR of 100.469dB. The 

chosen fixed-point formats all use rounding as the 

quantization mode. The need for an overflow mode was 

overcome with the selected choices for the word-lengths. 

D. Resource Utilization Study 

The Zybo Z7-10 board used has limited resources and 

their use adds an associated power consumption. The goal of 

this study is to provide a relation between the size of the 

operators (inputs and output) and the resources allocated for 

that IP core to obtain the information needed to identify 

potentially expensive areas and estimate the values of the 

resources allocated by the future design. After gathering the 

information needed to make the circuit estimates, two 

estimations were, one for a hypothetical circuit made based 

on 64 bit wide input variables (Estimate A) and other made 

using the formats in table 6 (Estimate A). The estimates 

include only the circuit responsible for performing the 

mathematical operations of the Backprojection algorithm, 

excluding the square root. 

Table 7 - Resources required by Estimate A 

Estimate A: Total Hardware Resources 

LUT Register DSP 

16 823 21 691 226 

Table 8 - Resources required by Estimate B 

Estimate B: Total Hardware Resources 

LUT Register DSP 

8 997 11 452 69 
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As per tables 7 and 8, the resource consumption is much 

lower using optimized word lengths, validating this method 

as a valuable optimization procedure. From the analysis of 

this study it is expected that the design will fit the chosen 

target device.  

Another resource study was made to evaluate the 

proposed architecture, this one focused on the memory types 

chosen to store the input and output values, as well as the 

memory capacity required by this architecture. To achieve the 

overall goals of this work the memory access operations must 

have a maximum latency of 1 clock cycle. This is a necessity 

because for every cycle of the algorithm a new address for 

reading input values is calculated. To meet the 

aforementioned latency requirements while maintaining the 

algorithm’s schedule, the only viable option is to hold all the 

data in the Block RAM (BRAM) cells present in the PL fabric 

of the target device.  

Table 9 - Estimate of BRAM required to store all input/output 

values 

Data 36Kb BRAM cells 

Satellite Position: 3 

X 1 

Y 1 

Z 1 

Satellite Samples 3648 

Output Image 0 

Board Resources 60 

Since the total size of the samples (in bits) is larger than 

the total capacity of the BRAMs in the board, all solutions 

considered from this point forward for the storage of the 

sample values are based on an architecture with 2 equal 

BRAMs, where one is being read while the other is updated 

with the next values. This dynamic happens throughout the 

execution of the system.  

E. Algorithm Rescheduling 

The original schedule requires more BRAM than the 

available in the board, as shown in table 9. To overcome this 

limitation, a combination of memory management and 

algorithm rescheduling was used. The cycles of the 

Backprojection algorithm are independent from one another 

with the accumulation phase being the only part where the 

dependency between cycles becomes relevant. Three 

schedules were studied: 

Pixel Computation: for each pixel calculate and accumulate 

the contribution of all pulses, then go to the next pixel. This 

was the original schedule.  

Pulse Computation: for each pulse calculate its contribution 

to every pixel, and then go to the next pulse. 

Pixel Region Computation: for each pulse calculate its 

contribution to every pixel in a region, then go to the next 

pulse. After the contribution of all the pulses has been 

calculated, go to the next region. A region is considered a 

parcel of the whole image under formation. 

The pseudocode of the organization of each schedule is 

presented in table 10, with the details presented in table 11.  

Table 10 - Pseudocode of the loop hierarchy for the schedules 

studied 

Schedule Pseudo Code 

Pixel 

Computation 

For every Pixel do: 

    For every Pulse do: 

Pulse 

Computation 

For every Pulse do: 

    For every Pixel do: 

Pixel Region 

Computation 

For every Region do: 

    For every Pixel in the Region do: 

For every Pulse do: 

 

IV. PROPOSED SYSTEM ARCHITECTURE 

The proposed architecture for Hardware Accelerator 

implemented in the PL system is presented and explained in 

detail. The circuit was designed in Vivado due to the program 

belonging to the same manufacturer as the FPGA. All the 

custom-built modules and circuits were debugged using the 

Vivado Simulator, except the montage of the whole system 

(that includes the PS+PL system), that was debugged using 

the Integrated Logic Analyser (ILA). The architecture was 

divided by function into three parts, as shown in figure 5. 

1. Memory (Purple box + Pink box) 

2. Algorithm Execution (Orange box) 

3. System Control (light purple box) 

 

Figure 5 - Proposed system architecture, discriminating memory 

units and inter-system communication. 
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Table 11 - Overview of the schedules’ requirements and implementation details 

 
Schedules 

Pixel Computation Pulse Computation Pixel Region Computation 

Input Requirements 

Every cycle: 

-X, Y and Z values for the new 

satellite position; 

-Real and imaginary parts of 

every sample from the next 

pulse; 

Every 262,144 cycles: 

-X, Y and Z values for the new 

satellite position; 

-Real and imaginary parts of 

every sample from the next 

pulse; 

Every REGION SIZE cycles: 

-X,Y and Z values for the new 

satellite position; 

-Real and imaginary parts of every 

sample from the next pulse; 

Intermediate values 

Requirements 
Hold 2 values at a time; Hold 524,288 values at a time; 

Hold 2*REGION SIZE values at a 

time; 

Output Requirements 

Every 512 cycles: 

-2 values to be stored in the 

DDR; 

End of Execution: 

-524,288 values to store in the 

DDR; 

Every REGION SIZE * 512 cycles: 

-REGION SIZE values to be stored 

in the DDR; 

Advantages 

- Output: very low throughput; is 

the final value for each pixel. 

- Bandwidth requirements for 

storing output values: low; 

achievable with the Zybo 

board’s resources 

-Updates:  the BRAM holding 

the samples only needs to be 

updated every 262,144 cycles. 

Updates: the BRAM holding the 

sample values needs to be updated 

every REGION SIZE cycles. 

To work the REGION SIZE needs to 

be bigger than 4096 (amount of 

values to update). 

Disadvantages 

- Unfeasible input requirement 

regarding sample values.Too 

much Bandwidth required. 

- Unfeasible intermediate 

values requirement. Not enough 

BRAM available 

-Region size depends on BRAM 

available. 

-Region size cannot be smaller than 

the number of samples per pulse. 

Implementation 

Requirements 

- Does not require BRAMs in the 

output. 

-Does not need BRAMs for the 

Satellite positions; the time 

between the need for new 

positions allows other solutions. 

- 

36Kb BRAM 3651 924 45 

18Kb BRAM 0 3 4 

Resources 36Kb BRAMs: 60, each one can be split into two 18Kb BRAMs. 

Feasibility No No Yes 

A. Memory Units 

DDR 

The DDR memory is used to hold all the input data files 

and the output image. The inputs consist of the Satellite 

position file, containing all the positions of the Satellite in the 

format 24Q40, and the Satellite sample file, containing all the 

samples in the format 10Q22.  

The AXI DMA IP core coordinates the accesses made by 

the circuit to the DDR memory, due to the high performance 

achievable using the HP ports and DMA feature. All the 

interfaces used to read/write data feature a 64-bit wide data 

channel allowing for the processing of a word per clock cycle, 

in any direction. The use of the module is further incentivised 

by the fact that the connections to the circuit are made using 

the AXI Stream protocol. Two instances of this IP core are 

used, the first being responsible for reading satellite positions 

and writing the real part of the output image and the second 

being responsible for reading the satellite samples and writing 

the imaginary part of the output image. 
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BRAM 

The BRAM modules are used to hold all the Satellite 

positions, all the Samples from 2 pulses at a time and the 

intermediate/final values of the pixels in a region. Table 12 

presents the configurations for these modules along with their 

contents. 

Table 12 - BRAM modules configurations 

ID Content Format 
Word 

Depth 
Mode 

36Kb 

BRAM  

cells 

B1.1 
X coordinate 

(position) 

1 value per 

word 
512 

Simple  

Dual 

Port 

1  

each 
B1.2 

Y coordinate 

(position) 

B1.3 
Z coordinate 

(position)* 

B2.1 
Samples from 

pulse X 

-Real 

part[63:32] 

-Imaginary 

part[31:0] 

4096 

True 

Dual 

Port 

7.5  

each 
B2.2 

Samples from 

pulse X+1 

B3.1 
Real part of 

Output Image 

1 value per 

word 
8192 

Simple  

Dual 

Port 

14.5  

each 
B3.2 

Imaginary part  

of Output Image 

1 value per 

word 

B4.1 

Output FIFO 
1 value per 

word 
2048 X 

4  

each 

 B4.2 

*This BRAM module was supressed in the final system due 

to lack of BRAM available and because the data set used 

had fixed Z coordinate for the platform in all pulses. 

All the BRAMs feature a memory controller interface and 

an AXI Stream interface along with a finite state machine to 

control them. The modules also feature a word counter to 

manage the addressing of writing operations and the memory 

switching while writing. The controllers are now divided by 

the 4 different memory modules. 

C. Algorithm Execution Circuit 

To facilitate the comprehension of this work, the 

presentation of the circuit is divided into 5 parts, where each 

part has a well-defined purpose and functionality. The circuit 

is divided as follows: 

1. Distance -> Calculates the distance between the 

satellite and a given pixel. 

2. Sample -> Computes the sample values for each pair: 

pulse[i]  ↔  pixel[x, y]. 

3. Filter -> Calculates the values of the Matched Filter 

for the distance provided. 

4. MultC -> Computes the complex multiplication 

between the sample and the matched filter. 

5. Accumulator -> Accumulates the contribution of the 

pulses for each pixel. 

 

 

Figure 6 - Hardware Accelerator Top-Level Architecture 

Distance Module 

The Distance module is composed of the B1 memories 

and the modules that perform the arithmetic operations 

responsible for calculating the distance between the Satellite 

platform and the Pixel coordinates. The module reads the 

satellite position from the B1 memories and receives the pixel 

position from the Pixel Position module, calculating the first 

part of the Pythagorean theorem (Radicant), described in the 

following equations: 

 𝑋1 = (𝑝𝑙𝑎𝑡𝑥  −  𝑝𝑥)
2 (8) 

 𝑌1 = (𝑝𝑙𝑎𝑡𝑥  −  𝑝𝑦)
2  (9) 

 𝑅𝑎𝑑𝑖𝑐𝑎𝑛𝑡 = 𝑋1 + 𝑌1 + 𝑍1 (10) 

The result is then passed to the Square Root module to 

obtain the final value of the distance. Since the Z coordinate 

of the satellite (𝑝𝑙𝑎𝑡𝑧) is constant and the z coordinate of the 

image is always zero, the optimization decision of cutting the 

Z coordinate part of the circuit was made. This decision 

allowed to free BRAM cells. 

Pixel Position Module 

The Pixel Position module was implemented using binary 

counters, logic gates and one adder to produce the correct 

sequence of pixel positions, calculating a new value every 

clock cycle. It is also responsible for calculating the reading 

addresses for the B1 memories. Due to the schedule chosen 

for the algorithm’s execution the pixels’ positions are 

calculated by the equations presented next: 

 𝑅𝑦 = 16 ∗  𝑟𝑒𝑔𝑖𝑜𝑛;   𝑟𝑒𝑔𝑖𝑜𝑛 ∈ [0,32];  (11) 

 𝑂𝑓𝑓𝑠𝑒𝑡𝑥 = (−255,5 ∗ 𝑑𝑥𝑑𝑦);   (12) 

 𝑂𝑓𝑓𝑠𝑒𝑡𝑦 = (−255,5 ∗ 𝑑𝑥𝑑𝑦) + (𝑅𝑦 ∗ 𝑑𝑥𝑑𝑦);   (13) 

 𝑝𝑥  = 𝑂𝑓𝑓𝑠𝑒𝑡𝑥  +  (𝑖𝑥 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑥 ∈  [0, 511]; (14) 

 𝑝𝑦  = 𝑂𝑓𝑓𝑠𝑒𝑡𝑦  +  (𝑖𝑦 ∗  𝑑𝑥𝑑𝑦);   𝑖𝑦 ∈  [0, 15]; (15) 

 

The Pixel Position module is also responsible for 

controlling one important flag, the Sample memory switch 

flag. This flag signals the Sample module when to switch 

memories for reading, meaning the next iterations are 
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pertaining contributions of the next pulse. This flag is set to 

one every time the Pixel Position module reaches the position 

of the final pixel of a region. 

Square Root Module 

The Square root module is responsible for performing the 

square root operation that ends the calculus of the distance 

between the Satellite and the Pixel. This operation is 

performed by a custom module built to perform the square 

root using the Binary restoring square root extraction method. 

Because this method uses two input bits to calculate one bit 

of the output per layer, the total latency of the module is half 

the number of bits in the output rounded up, which in this case 

is thirty-nine cycles. 

Samples Module 

The Sample module is composed by the B2 memory, the 

WBin module, the Interpolation module, an adder belonging 

to the B2 memory controller and a Shift Register. The shift 

register was introduced to compensate for the difference in 

latencies in the Datapath of the Bin signal and the Datapath 

of the W1 and W2 signals. The adder is used to compute the 

address of the next sample of the pulse by adding one to the 

address of the current sample.  

WBin Module 

The WBin module calculates the address (Bin) where 

the correct sample for a given distance is, as well as the 

interpolation coefficients (W_1 and W_2) to be used by the 

Interpolation module. This module was implemented with 

basic arithmetic operation modules and the concatenation 

module.  

The operations performed by this module are described in 

the following equations: 

 𝐵𝑖𝑛 =  ⌊(𝑅 − 𝑅0) ∗  𝑑𝑅𝑖𝑛𝑣⌋ (16) 

 𝑊2  = ((𝑅 − 𝑅0) ∗  𝑑𝑅𝑖𝑛𝑣) − 𝐵𝑖𝑛 (17) 

 𝑊1  = 1 − 𝑊2 (18) 

 

For efficiency purposes, in the implemented circuit the 

multiplication by the coefficient 𝑑𝑅𝑖𝑛𝑣 was replaced by an 

arithmetic left shift due to 𝑑𝑅𝑖𝑛𝑣 being a constant whose value 

is a positive power of two (32 = 2^5). The subtraction was 

also replaced by simply splitting the bin_0 bus to separate the 

integer from the decimal part. This module has a latency of 

one cycle due to the buffer on the outputs. 

Interpolation Module 

The Interpolation module performs the linear 

interpolation described by the equations: 

 
𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 =  (𝑑𝑎𝑡𝑎1𝑅𝑒 ∗ 𝑊1)  + (𝑑𝑎𝑡𝑎2𝑅𝑒

∗ 𝑊2) 
(19) 

 
𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 =  (𝑑𝑎𝑡𝑎1𝐼𝑚 ∗ 𝑊1)  + (𝑑𝑎𝑡𝑎2𝐼𝑚

∗ 𝑊2) 
(20) 

 

The interpolation is done between the samples from the 

Bin address and the Bin+1 address of the B2 memory, using 

the coefficients calculated by the Wbin module.  

Filter Module 

The Filter module is responsible for calculating the 

matched filter values from the distance value received. The 

module was built using basic mathematical IP cores, the 

CORDIC IP core, a Shift Register, a custom multiplexer and 

support cores, like the concatenation IP core. This module can 

be divided into three parts: Argument calculator, 

Trigonometric stage, and Quadrant normalizer.  

The Argument calculator is the circuit responsible for 

converting the value of the distance (in meters) received into 

the value of an angle (in radians). After the conversion, the 

quadrant is stored in a shift register and the angle is rotated to 

the first quadrant.  

The Trigonometric stage employs the circuit composed by 

the CORDIC IP core and it is responsible for calculating the 

sine and cosine of the angle received as input. The 

configuration of the CORDIC IP core results in an IP core 

with a latency of 28 cycles. 

The Quadrant normalizer follows the Trigonometric stage 

and is responsible for correcting the effects of the angle 

rotation described in the first stage. This module was 

implemented by providing the sine and cosine values for all 

the possible 90 degrees angle rotations (sin(a), -sin(a), cos(a), 

-cos(a)) and using the quadrant number to select the correct 

option.  

Complex Multiplication Module 

The MultC module is responsible for performing the 

complex multiplication between the samples and the matched 

filter. It was implemented using only basic mathematical IP 

cores, performing the operations detailed in eq.52 and 53: 

𝑃𝑟𝑜𝑑𝑅𝑒 =  (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑟𝑒) − (𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) (21) 

𝑃𝑟𝑜𝑑𝐼𝑚 = (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) + (𝑆𝑎𝑚𝑝𝑙𝑒𝑖𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑅𝑒) (22) 

Accumulator Module 

This module performs the accumulation and stores the 

results in the B3 memory for every cycle, with only one 

exception pertaining to the last accumulation of a pixel, where 

the result is passed to the FIFO in the next module. The 

operations performed by this module are detailed in eq.23 and 

24: 

𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖

+ 𝑃𝑟𝑜𝑑𝑅𝑒𝑖
;  𝑖 ∈  [0; 511]  (23) 
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𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖

+ 𝑃𝑟𝑜𝑑𝐼𝑚𝑖
 ;  𝑖 ∈  [0; 511] (24) 

D. System Control 

The accelerator has an enable signal that runs through the 

whole Datapath, going from the System control module to the 

Accumulator modules. With this signal it is possible to know 

if a value stored in a pipeline stage is valid or not. The need 

for a control system stems from the existence of an 

initialization phase to fill the BRAM modules, because all the 

positions of the satellite and all the samples from the first 

pulse must be written in the BRAMs before the execution can 

start. Also, due to the output values being sent for storage in 

bursts, a FIFO had to be added to solve the lack of 

synchronization between the AXI DMAs and the 

Accumulator modules.  

V. RESULTS 

A. SNR 

The Hardware/Software implementation produced an 

image with a SNR value of 99.210 dB. The result is below the 

projected SNR value of 100.469 dB by 1.259 dB and below 

the threshold of 100dB proposed in the beginning of this work 

by 0.79 dB. Figure 7 shows the image taken as the golden 

reference and the image formed by the fixed-point 

Hardware/Software implementation, respectively.   

 

Figure 7 – Golden reference (left), Output of the final 

Hardware/Software implementation (99.21 dB; right) 

This difference was not predicted but was expected 

considering that the exact implementation of the CORDIC 

algorithm in the IP core is hidden to the user and is protected 

by Xilinx. 

B. Resources 
The resources allocated by the final design can be found 

in their entirety in the target device. When comparing the 

resource allocation with estimations made we can conclude 

that the predicted savings made through the word length study 

are valid predictions and that the study allowed for some 

optimization in that area.  

Programmable Logic Resources 

Table 13 shows the amount of resources from the PL 

system allocated by the design after the implementation phase 

performed in Vivado. 

Table 13 - Resources used in PL by the whole system 

Name LUTs Registers DSPs BRAM 

Distance 2292 2807 0 2 

Sample 398 356 10 13 

Filter 2198 2491 25 0 

MultC 0 68 10 0 

Accum 219 231 0 14.5 

Init 2 2 0 0 

Axi DMA 1636 2407 0 3 

Axi-Interconnect 

(Axi-Stream) 
543 650 0 0 

Axi-Interconnect 

(Axi-Lite) 
505 657 0 0 

Axi Data FIFO 60 88 0 4 

FIFO Transfer 

Control 
8 20 0 0 

Processor System 

Reset 
16 33 0 0 

TOTAL 
10438 

(59.3 %) 

13304 

(37.7 %) 

55 

(68.8 %) 

58 

(96.7 %) 

The rescheduling of the algorithm proved to be one of the 

biggest contributions to optimization in the design of the 

circuit, by lowering the BRAM resources needed by the 

implementation enough to fit the target device. This alteration 

reduced the BRAM needed by a factor of 77 times. 

CPU 

The final design only used one core of the Dual-core ARM 

Cortex-A9 CPU.  

C. Timing and Latency 
The total execution time of the system was 0.96 seconds. 

This time was achieved with a working frequency of 140 

MHz on the PL clock.  

Table 14 shows the latency of the top-level modules of the 

system. 

Table 14 - Latency of the Top-Level modules 

Name Latency (cycles) 

Distance 46 

Sample 6 

Filter 44 

MultC 3 

Accum 1 

TOTAL 100 

 

The timing objective was fulfilled. The total execution 

time obtained represents a speedup of 500x over the original 

software only implementation, executed in the PS system of 

the target device. The pipelined architecture and the 

rescheduling of the algorithm allowed the overheads from 



10 

 

 

accessing the external memory to be hidden without 

impacting the execution time.  

D. Energy Consumption 
The energy consumption estimate provided by Vivado 

appears in table 15. 

Table 15 - Power consumption discriminated by component of the 

target device 

Component Power (Watts) Power (%) 

CPU 1.406 75 

Signals 0.129 7 

BRAM 0.118 6 

Logic 0.101 5 

DSP 0.067 4 

Clocks 0.064 3 

From the results, it can be concluded that the CPU is by far 

the most power consuming component used. When relating 

the power consumption profile presented in table 15 with the 

Hw/Sw partition employed in the final implementation, a 

large discrepancy between the CPU’s workload and its 

consumption can be found due to this component’s static 

consumption.  

VI. CONCLUSION 

The aim of this work was to design, develop and evaluate 

an optimized system to compute the imaging forming 

algorithm for a SAR system. The design was developed 

around two main ideas: the advantage offered by flexibility of 

an FPGA regarding parallel and pipeline architectures and the 

advantages offered by the fixed-point format. Both the initial 

studies performed on the Backprojection algorithm and their 

conclusions are generic enough to be used in the study of 

almost every other algorithm, with the exception of the 

rescheduling that presents a reasoning very specific to the 

characteristics of the algorithm. The results obtained in the 

software fixed-point implementations are one more proof that 

the methods used today to approximate mathematical 

functions can provide a high-quality solution, opening a lot of 

opportunities to the adoption of fixed-point architectures in 

optimization efforts. 

 The fact that the device used in this work is low-end 

should emphasise the potential of the SoC FPGA family in 

optimization efforts. The energy consumption could be 

greatly improved. Due to the Hw/Sw partition present in the 

design, the CPU was left with very few instructions to 

perform. Furthermore, the instructions that the CPU still 

performs are only pertaining the control of the AXI-DMA 

blocks and can be easily implemented by a finite state 

machine. Floor-planning is outside the scope of this work, 

however it could be an effective method to achieve a faster 

final circuit. This opinion is based on the high impact of the 

Net Delay values in the Total Delay values of the slowest 

paths in the circuit. 

All these improvements could result in a useful real-time 

application in a device with good portability characteristics. 
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