
1

Back-Projection Algorithm Optimization for On-Board Embedded

SAR Imaging System

Extended Abstract of the MSc. Dissertation

Afonso Miguel Soares Fernandes

Departamento de Engenharia Electrotécnica e de Computadores, Instituto Superior Técnico

Supervisors: Prof. José Teixeira de Sousa; Dr. Rui Policarpo Duarte

Abstract - The Synthetic Aperture Radar (SAR) is a

type of radar capable of high-resolution coherent

Imaging. To produce images from SAR data, an image

forming algorithm must be used. The Backprojection

Algorithm is known for generating high resolution images

at the expense of computational intensity. Due to this

drawback, the Backprojection Algorithm has never been

widely adopted for real time applications or

implementation in Small, Weight and Power (SWaP)

devices. The first contribution of this work is the analysis

and fixed-point conversion of the Backprojection

Algorithm while providing high-quality images. The

second key contribution of this work is the

implementation of the Backprojection algorithm in a

System-on-Chip (SoC) Field Programmable Gate Array

(FPGA) device. A proof of concept was done on a Zybo

Z7-10 board where it was observed the resulting 512x512

image had a signal-to-noise ratio of 99.21 dB. This result

was achieved in 959ms, representing a speedup of 500x

over the original software implementation.

I. INTRODUCTION

This work is integrated in the FCT project “Synthetic

Aperture Radar Robust Reconfigurable Optimized

Computing Architecture” (SARRROCA, PTDC/EEI-

HAC/31819/2017). The overarching goal of this project is to

promote mass adoption of Synthetic Aperture Radar (SAR)

imagery and its deployment on aircraft by providing reliable,

portable and lighter computational on-board systems to

produce real-time SAR images. This will be achieved by

coupling known optimization techniques with the flexibility,

power efficiency and performance of System-on-Chip (Soc)

Field-Programable Gate Arrays (FPGA).

The SAR is a complex imaging data collection system

with diverse sensing applications. This type of radar uses the

relative motion between itself and the target to generate high

resolution 2-D or 3-D images[1], making it ideal for mounting

on moving platforms such as satellites, aircrafts or drones

[2][3].

The Backprojection algorithm is one of the most well-

suited for use in non-ideal conditions, as its working principle

overcomes most of the obstacles that others can only

compensate for. Being a high-quality image formation

algorithm also implies being a complex and resource-

intensive algorithm [1].

The purpose of this work is to develop a

Hardware/Software implementation of the Backprojection

Algorithm capable of producing a 512x512 pixels image per

second using a small, lightweight, power-efficient device.

The optimization process is based on fixed-point conversion,

word-length optimization, and algorithm rescheduling

coupled with a pipeline architecture.

II. BACKGROUND AND STATE OF THE ART

SAR

The SAR is a type of coherent radar capable of high-

resolution coherent imaging. This type of radar uses the

relative motion between itself and the target to generate high

resolution 2-D or 3-D images, making it ideal for mounting

on moving platforms such as satellites, aircrafts or drones [2].

Due to being an active sensor, i.e. a sensor that provides its

own source of illumination, a SAR can operate during day or

night. By selecting the operating frequency correctly, the

microwave signal can penetrate clouds, haze, rain and fog and

precipitation with very little attenuation, allowing SAR to

operate in weather conditions that make the use of visible

light/infrared systems unviable. SAR has been successfully

used over a wide range of applications, including

surveillance, forest, sea, snow and ice monitoring, mining, oil

pollution monitoring, oceanography and classification of

terrain [2][4][3].

Figure 1 - SAR's functioning principle [9]

2

The SAR works by periodically emitting pulses with a

well-defined spectrum and then collecting the echoes

reflected back to the antenna at regular time intervals,

resulting in samples containing information regarding

amplitude and phase [4][3][5]. Allying the samples with the

precise time at which they were recorded creates a data set

that can be passed to an imaging forming algorithm to obtain

the final image.

Backprojection Algorithm

To create SAR images an image formation algorithm is

necessary, which reads the collected raw data and defines an

output image [1]. The Backprojection Algorithm is a time-

domain algorithm [2] sometimes referred to as the gold

standard in terms of quality for SAR image forming [2][6]. It

makes little assumptions and can work in a range of modes

and geometries [5][1], with its biggest drawback being the

high computational cost [1][2].

The Global Backprojection Algorithm uses the following

parameters as inputs: carrier frequency; range from platform

to centre of the swath; range bin resolution; image pixel

spacing; number of pulses; number of samples per pulse;

output image dimensions; platform locations (aperture

points); samples from the radar. To calculate the final value

for each pixel, the Backprojection Algorithm executes the

following steps for every pair (pixel<->pulse) in the order

they are presented [2][6]:

1. Calculate the distance between the SAR and the pixel.

2. Convert the previously calculated distance into a position

(range bin) in the sample data set.

3. Compute sample value by linear interpolation between the

sample of the position obtained before and the sample in

the next position. The interpolation can be described by

Eq.1:

𝑔𝑥,𝑦(𝑟𝑘) =

𝑔(𝑛) +
𝑔(𝑛 + 1) − 𝑔(𝑛)

𝑟(𝑛 + 1) − 𝑟(𝑛)
∗ (𝑟𝑘 − 𝑟(𝑛))

(1)

4. Compute the values for the matched filter described by the

Eq.2, with 𝑑𝑟 calculated according to Eq.3:

 𝑒𝑖.𝜔.2.|𝑟𝑘⃗⃗⃗⃗ | = cos(2. 𝜔. 𝑑𝑟) + 𝑖𝑠𝑒𝑛(2. 𝜔. 𝑑𝑟) (2)

 𝑑𝑟 = √(𝑥 − 𝑥𝑘)
2 + (𝑦 − 𝑦𝑘)

2 + (𝑧 − 𝑧𝑘)
2

− 𝑟𝑐

(3)

5. Scale the sampled values by the matched filter to obtain

the pulse’s contribution.

6. Accumulate the contribution for the pixel. End cycle.

The mathematical formulation for this algorithm is

described in Eq.4:

 𝑓(𝑥, 𝑦) = ∑𝑔𝑥,𝑦(𝑟𝑘 , 𝜃𝑘). 𝑒
𝑖.𝜔.2.|𝑟𝑘⃗⃗⃗⃗ |

𝑘

 (4(4)

Table 1 - Meaning of Backprojection variables

𝑓(𝑥, 𝑦) Output of Algorithm, final value of pixel (x,

y)

𝑔(𝑛) Radar sample in range bin

𝑔(𝑛 + 1) Radar sample in adjacent range bin after

𝑔𝑥,𝑦(𝑟𝑘 , 𝜃𝑘) Reflection received by radar at 𝑟𝑘 at 𝜃𝑘

𝜔 Angular velocity of radar waveform

𝑟(𝑛) Corresponding range to bin

𝑟(𝑛 + 1) Corresponding range to adjacent bin after

𝑥, 𝑦, 𝑧 Coordinates of the pixel

𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 Coordinates of the radar

𝜃𝑘 Aperture point

𝑟𝑘 Range from pixel (x,y) to aperture point 𝜃𝑘

The pseudocode for this implementation is presented in

figure 2.

Figure 2 - Pseudocode of the Backprojection Algorithm [7]

Image Quality Assessment

The Signal-to-Noise-Ratio (SNR) metric was chosen to

evaluate the quality of the output image and it is calculated

using Eq.5 [2].

 𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
∑ |𝑠𝑘|

2𝑁
𝑘=1

∑ |𝑠𝑘 − 𝑛𝑘|
2𝑁

𝑘=1

)
((5)

where the 𝑠𝑘 and 𝑛𝑘 terms represent the reference and output

image values of the k-th element respectively, and N

represents the number of values to be compared.

A. Reconfigurable Hardware

The family of devices that best combines the flexibility of

a generic purpose CPU with the reconfigurable high-speed

computing fabrics hardware results from the fusion of a SoC

with a FPGA device [2]. The FPGA provides the configurable

high-speed computing fabric while the SoC architecture

guarantees: tight coupling between components; the existence

of a microcontroller or microprocessor; the existence of

external memories or connectors for external memories; a

range of peripheral ports [8][9].

Zybo Z7-10

This work was developed to be implemented in a Zybo

Z7-10 board containing a Zynq 7000 device from Xilinx.inc,

3

an external DDR3 memory with capacity for 1GB and I/O

peripherals [10]. The Zynq 7000 is composed of a Processing

System (PS), featuring an ARM Cortex-A9 dual-core

processor, and a PL block. The PL is a Xilinx 7-series FPGA.

The resources available are shown in table 2.

Table 2 - Main resources in the PL of the Zybo Z7-10

LUT Elements Flipflops DSP BRAM Slice

17 600 35 200 80 60 4400

The schematic of the APSoC (All Programmable SoC) is

shown in figure 3.

Figure 3 - Overview of the Zybo's APSoc Architecture [10]

The board was selected due to its embedded architecture,

reconfigurable capabilities, and low power consumption.

B. Numeric Formats

The design of embedded systems usually starts at the

algorithmic level where an execution model is created from

the general concept of an algorithm. The development at this

stage in the design process is made invariably using the

Floating-Point numeric format since it provides the best

precision of all formats and is natively supported in most

Personal Computer (PC) systems [11]. After the initial phase,

design constraints change drastically due to the target system

changing from a common PC system to an embedded system.

In the new target, the use of a fixed-point format is known to

allow drastic savings in the traditional cost metrics: silicon

area, power consumption and latency/throughput

[11][12][13].

C. Approximate Computing Techniques

There are operations in the algorithm that do not have a

standard implementation in a fixed-point format. To

overcome this limitation, new implementations were made

using methods capable of producing approximate results. The

methods are studied with two purposes: to choose a method

for software implementation and to choose a method for

hardware implementation. The operations in question and the

methods chosen to approximate them are in table 3.

Table 3 - Approximation methods used in both implementations

 Platform

Operation Software Hardware

Square Root Newton-

Raphson[14]

Binary restoring square

root extraction[15]

Cosine & Sine CORDIC[16] CORDIC

III. OPTIMIZATION METHODOLOGY

A. Algorithm Profiling

The first step in the optimization of the Backprojection

algorithm is to identify the most time-consuming instructions

of the algorithm, as these will be the ones with the higher

potential for acceleration. Table 4 details the CPU present in

the target device, along with the relevant configuration

options

Table 4 - Target device Specifications and Configuration

CPU Operating

system

Multi-

Threading

Compilation

flags

ARM Cortex-A9 Bare metal No -O3

The profiling in the target system was performed using the

xil_time.h library functions. The total execution time

achieved was of 481s, the rest of the results are presented in

figure 4.

Figure 4 - Profiling results of the Backprojection Algorithm

It can be concluded that the Cosine and Sine operations

should be the focus of the optimization process, as these are

responsible for 91% of the processing time. These findings

correspond to the conclusions of previous works [5].

A first proposition for the optimized system architecture

is to have the Cosine and Sine operations implemented in the

PL of the SoC while the rest of the algorithm still executes in

the CPU. However, this architecture’s execution time would

still be far from the initial goal defined in the introduction of

this work. This is due primarily to the fact that a cycle of the

algorithm has too many instructions to allow a serial

execution in the CPU to be efficient.

4

B. Hardware/Software Partition

To achieve the initial goal of total execution time below

the one second mark, most, if not all, of the algorithm should

be executed in the PL because of the limitations of the PS

system. A system partition is proposed with the following

characteristics:

Table 5 - Proposed system partition

PS

Initialization of AXI-DMA modules;

Control of the read and write operations to the DDR

memory.

PL

Calculus of the Distance between the Satellite and the

pixels;

Calculus of the matched filter values relative to the

distances calculated before;

Sample selection using the calculated Distances;

Sample linear interpolation;

Complex multiplication between the samples and the

matched filter;

Accumulation of the products of the complex

multiplication.

Now it is possible to pipeline all the algorithm’s

operations, achieving a higher throughput. The working

frequency was chosen to allow the target system to achieve

the desired execution time of 1 second. Solving eq. 30 and 31:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =

(𝑁º 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑔𝑒𝑠 + 𝑁º 𝐶𝑦𝑐𝑙𝑒𝑠)/𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 (6)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =

(0? + 134 217 728)/ 𝑥 = 1𝑠
(7)

We obtain a minimum frequency of 135 MHz. However,

the closest possible clock frequency allowed in the target

device is 140 MHz. Although the number of pipeline stages

is unknown at this point, we can disregard it for these

calculations, has its impact has no significance. Initially, for

a clock frequency of 140MHz the circuit did not achieve the

timing requirements. In the combinatorial logic part of the

circuit, these issues were solved though the placement of

pipeline stages, leaving the communications and memory

accesses as the potential limiting factors.

C. Word-Length Optimization

To optimize a circuit, it is fundamental to choose the right

fixed-point format for its signals as this decision has a great

impact over the resources allocated and in achieving the

timing requirements of the circuit.

The original program is executed while collecting

information about the interval of values each variable can

take. With these results a final number of bits can be defined

for the integer part of each signal. To choose the right length

for the decimal part of the format it was necessary to develop

a new software implementation of the Backprojection

algorithm using fixed point. Due to the complexity of the

relation between the attained SNR and the length of the

decimal part of the variables, this part of the study was made

by trial and error. Considering that every variable’s fixed-

point format can be deducted from the variable’s relation to

the input variables, the latter were split in two groups:

• Variables belonging to the calculation of the distance

between the Satellite and a pixel. (satellite positions, pixel

positions, Pythagorean theorem variables, sample

selection variables);

• Variables belonging to the Filter and Samples (samples,

matched filter, interpolation coefficients, complex

multiplication variables, accumulation variables).

This new implementation of the algorithm was executed

several times using different size combinations for the

variables. The integer part of the variables was fixed while the

decimal part was chosen to occupy the remaining bits. It was

concluded that to achieve the quality minimum of 100dB of

SNR while minimizing resource utilization, the best size

combination is:

Table 6 - Word-length of variables after optimization

Var Size Format

Distance 40 15Q25

Data/Filter 24 2Q22

This combination achieves an SNR of 100.469dB. The

chosen fixed-point formats all use rounding as the

quantization mode. The need for an overflow mode was

overcome with the selected choices for the word-lengths.

D. Resource Utilization Study

The Zybo Z7-10 board used has limited resources and

their use adds an associated power consumption. The goal of

this study is to provide a relation between the size of the

operators (inputs and output) and the resources allocated for

that IP core to obtain the information needed to identify

potentially expensive areas and estimate the values of the

resources allocated by the future design. After gathering the

information needed to make the circuit estimates, two

estimations were, one for a hypothetical circuit made based

on 64 bit wide input variables (Estimate A) and other made

using the formats in table 6 (Estimate A). The estimates

include only the circuit responsible for performing the

mathematical operations of the Backprojection algorithm,

excluding the square root.

Table 7 - Resources required by Estimate A

Estimate A: Total Hardware Resources

LUT Register DSP

16 823 21 691 226

Table 8 - Resources required by Estimate B

Estimate B: Total Hardware Resources

LUT Register DSP

8 997 11 452 69

5

As per tables 7 and 8, the resource consumption is much

lower using optimized word lengths, validating this method

as a valuable optimization procedure. From the analysis of

this study it is expected that the design will fit the chosen

target device.

Another resource study was made to evaluate the

proposed architecture, this one focused on the memory types

chosen to store the input and output values, as well as the

memory capacity required by this architecture. To achieve the

overall goals of this work the memory access operations must

have a maximum latency of 1 clock cycle. This is a necessity

because for every cycle of the algorithm a new address for

reading input values is calculated. To meet the

aforementioned latency requirements while maintaining the

algorithm’s schedule, the only viable option is to hold all the

data in the Block RAM (BRAM) cells present in the PL fabric

of the target device.

Table 9 - Estimate of BRAM required to store all input/output

values

Data 36Kb BRAM cells

Satellite Position: 3

X 1

Y 1

Z 1

Satellite Samples 3648

Output Image 0

Board Resources 60

Since the total size of the samples (in bits) is larger than

the total capacity of the BRAMs in the board, all solutions

considered from this point forward for the storage of the

sample values are based on an architecture with 2 equal

BRAMs, where one is being read while the other is updated

with the next values. This dynamic happens throughout the

execution of the system.

E. Algorithm Rescheduling

The original schedule requires more BRAM than the

available in the board, as shown in table 9. To overcome this

limitation, a combination of memory management and

algorithm rescheduling was used. The cycles of the

Backprojection algorithm are independent from one another

with the accumulation phase being the only part where the

dependency between cycles becomes relevant. Three

schedules were studied:

Pixel Computation: for each pixel calculate and accumulate

the contribution of all pulses, then go to the next pixel. This

was the original schedule.

Pulse Computation: for each pulse calculate its contribution

to every pixel, and then go to the next pulse.

Pixel Region Computation: for each pulse calculate its

contribution to every pixel in a region, then go to the next

pulse. After the contribution of all the pulses has been

calculated, go to the next region. A region is considered a

parcel of the whole image under formation.

The pseudocode of the organization of each schedule is

presented in table 10, with the details presented in table 11.

Table 10 - Pseudocode of the loop hierarchy for the schedules

studied

Schedule Pseudo Code

Pixel

Computation

For every Pixel do:

 For every Pulse do:

Pulse

Computation

For every Pulse do:

 For every Pixel do:

Pixel Region

Computation

For every Region do:

 For every Pixel in the Region do:

For every Pulse do:

IV. PROPOSED SYSTEM ARCHITECTURE

The proposed architecture for Hardware Accelerator

implemented in the PL system is presented and explained in

detail. The circuit was designed in Vivado due to the program

belonging to the same manufacturer as the FPGA. All the

custom-built modules and circuits were debugged using the

Vivado Simulator, except the montage of the whole system

(that includes the PS+PL system), that was debugged using

the Integrated Logic Analyser (ILA). The architecture was

divided by function into three parts, as shown in figure 5.

1. Memory (Purple box + Pink box)

2. Algorithm Execution (Orange box)

3. System Control (light purple box)

Figure 5 - Proposed system architecture, discriminating memory

units and inter-system communication.

6

Table 11 - Overview of the schedules’ requirements and implementation details

Schedules

Pixel Computation Pulse Computation Pixel Region Computation

Input Requirements

Every cycle:

-X, Y and Z values for the new

satellite position;

-Real and imaginary parts of

every sample from the next

pulse;

Every 262,144 cycles:

-X, Y and Z values for the new

satellite position;

-Real and imaginary parts of

every sample from the next

pulse;

Every REGION SIZE cycles:

-X,Y and Z values for the new

satellite position;

-Real and imaginary parts of every

sample from the next pulse;

Intermediate values

Requirements
Hold 2 values at a time; Hold 524,288 values at a time;

Hold 2*REGION SIZE values at a

time;

Output Requirements

Every 512 cycles:

-2 values to be stored in the

DDR;

End of Execution:

-524,288 values to store in the

DDR;

Every REGION SIZE * 512 cycles:

-REGION SIZE values to be stored

in the DDR;

Advantages

- Output: very low throughput; is

the final value for each pixel.

- Bandwidth requirements for

storing output values: low;

achievable with the Zybo

board’s resources

-Updates: the BRAM holding

the samples only needs to be

updated every 262,144 cycles.

Updates: the BRAM holding the

sample values needs to be updated

every REGION SIZE cycles.

To work the REGION SIZE needs to

be bigger than 4096 (amount of

values to update).

Disadvantages

- Unfeasible input requirement

regarding sample values.Too

much Bandwidth required.

- Unfeasible intermediate

values requirement. Not enough

BRAM available

-Region size depends on BRAM

available.

-Region size cannot be smaller than

the number of samples per pulse.

Implementation

Requirements

- Does not require BRAMs in the

output.

-Does not need BRAMs for the

Satellite positions; the time

between the need for new

positions allows other solutions.

-

36Kb BRAM 3651 924 45

18Kb BRAM 0 3 4

Resources 36Kb BRAMs: 60, each one can be split into two 18Kb BRAMs.

Feasibility No No Yes

A. Memory Units

DDR

The DDR memory is used to hold all the input data files

and the output image. The inputs consist of the Satellite

position file, containing all the positions of the Satellite in the

format 24Q40, and the Satellite sample file, containing all the

samples in the format 10Q22.

The AXI DMA IP core coordinates the accesses made by

the circuit to the DDR memory, due to the high performance

achievable using the HP ports and DMA feature. All the

interfaces used to read/write data feature a 64-bit wide data

channel allowing for the processing of a word per clock cycle,

in any direction. The use of the module is further incentivised

by the fact that the connections to the circuit are made using

the AXI Stream protocol. Two instances of this IP core are

used, the first being responsible for reading satellite positions

and writing the real part of the output image and the second

being responsible for reading the satellite samples and writing

the imaginary part of the output image.

7

BRAM

The BRAM modules are used to hold all the Satellite

positions, all the Samples from 2 pulses at a time and the

intermediate/final values of the pixels in a region. Table 12

presents the configurations for these modules along with their

contents.

Table 12 - BRAM modules configurations

ID Content Format
Word

Depth
Mode

36Kb

BRAM

cells

B1.1
X coordinate

(position)

1 value per

word
512

Simple

Dual

Port

1

each
B1.2

Y coordinate

(position)

B1.3
Z coordinate

(position)*

B2.1
Samples from

pulse X

-Real

part[63:32]

-Imaginary

part[31:0]

4096

True

Dual

Port

7.5

each
B2.2

Samples from

pulse X+1

B3.1
Real part of

Output Image

1 value per

word
8192

Simple

Dual

Port

14.5

each
B3.2

Imaginary part

of Output Image

1 value per

word

B4.1

Output FIFO
1 value per

word
2048 X

4

each

 B4.2

*This BRAM module was supressed in the final system due

to lack of BRAM available and because the data set used

had fixed Z coordinate for the platform in all pulses.

All the BRAMs feature a memory controller interface and

an AXI Stream interface along with a finite state machine to

control them. The modules also feature a word counter to

manage the addressing of writing operations and the memory

switching while writing. The controllers are now divided by

the 4 different memory modules.

C. Algorithm Execution Circuit

To facilitate the comprehension of this work, the

presentation of the circuit is divided into 5 parts, where each

part has a well-defined purpose and functionality. The circuit

is divided as follows:

1. Distance -> Calculates the distance between the

satellite and a given pixel.

2. Sample -> Computes the sample values for each pair:

pulse[i] ↔ pixel[x, y].

3. Filter -> Calculates the values of the Matched Filter

for the distance provided.

4. MultC -> Computes the complex multiplication

between the sample and the matched filter.

5. Accumulator -> Accumulates the contribution of the

pulses for each pixel.

Figure 6 - Hardware Accelerator Top-Level Architecture

Distance Module

The Distance module is composed of the B1 memories

and the modules that perform the arithmetic operations

responsible for calculating the distance between the Satellite

platform and the Pixel coordinates. The module reads the

satellite position from the B1 memories and receives the pixel

position from the Pixel Position module, calculating the first

part of the Pythagorean theorem (Radicant), described in the

following equations:

 𝑋1 = (𝑝𝑙𝑎𝑡𝑥 − 𝑝𝑥)
2 (8)

 𝑌1 = (𝑝𝑙𝑎𝑡𝑥 − 𝑝𝑦)
2 (9)

 𝑅𝑎𝑑𝑖𝑐𝑎𝑛𝑡 = 𝑋1 + 𝑌1 + 𝑍1 (10)

The result is then passed to the Square Root module to

obtain the final value of the distance. Since the Z coordinate

of the satellite (𝑝𝑙𝑎𝑡𝑧) is constant and the z coordinate of the

image is always zero, the optimization decision of cutting the

Z coordinate part of the circuit was made. This decision

allowed to free BRAM cells.

Pixel Position Module

The Pixel Position module was implemented using binary

counters, logic gates and one adder to produce the correct

sequence of pixel positions, calculating a new value every

clock cycle. It is also responsible for calculating the reading

addresses for the B1 memories. Due to the schedule chosen

for the algorithm’s execution the pixels’ positions are

calculated by the equations presented next:

 𝑅𝑦 = 16 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛; 𝑟𝑒𝑔𝑖𝑜𝑛 ∈ [0,32]; (11)

 𝑂𝑓𝑓𝑠𝑒𝑡𝑥 = (−255,5 ∗ 𝑑𝑥𝑑𝑦); (12)

 𝑂𝑓𝑓𝑠𝑒𝑡𝑦 = (−255,5 ∗ 𝑑𝑥𝑑𝑦) + (𝑅𝑦 ∗ 𝑑𝑥𝑑𝑦); (13)

 𝑝𝑥 = 𝑂𝑓𝑓𝑠𝑒𝑡𝑥 + (𝑖𝑥 ∗ 𝑑𝑥𝑑𝑦); 𝑖𝑥 ∈ [0, 511]; (14)

 𝑝𝑦 = 𝑂𝑓𝑓𝑠𝑒𝑡𝑦 + (𝑖𝑦 ∗ 𝑑𝑥𝑑𝑦); 𝑖𝑦 ∈ [0, 15]; (15)

The Pixel Position module is also responsible for

controlling one important flag, the Sample memory switch

flag. This flag signals the Sample module when to switch

memories for reading, meaning the next iterations are

8

pertaining contributions of the next pulse. This flag is set to

one every time the Pixel Position module reaches the position

of the final pixel of a region.

Square Root Module

The Square root module is responsible for performing the

square root operation that ends the calculus of the distance

between the Satellite and the Pixel. This operation is

performed by a custom module built to perform the square

root using the Binary restoring square root extraction method.

Because this method uses two input bits to calculate one bit

of the output per layer, the total latency of the module is half

the number of bits in the output rounded up, which in this case

is thirty-nine cycles.

Samples Module

The Sample module is composed by the B2 memory, the

WBin module, the Interpolation module, an adder belonging

to the B2 memory controller and a Shift Register. The shift

register was introduced to compensate for the difference in

latencies in the Datapath of the Bin signal and the Datapath

of the W1 and W2 signals. The adder is used to compute the

address of the next sample of the pulse by adding one to the

address of the current sample.

WBin Module

The WBin module calculates the address (Bin) where

the correct sample for a given distance is, as well as the

interpolation coefficients (W_1 and W_2) to be used by the

Interpolation module. This module was implemented with

basic arithmetic operation modules and the concatenation

module.

The operations performed by this module are described in

the following equations:

 𝐵𝑖𝑛 = ⌊(𝑅 − 𝑅0) ∗ 𝑑𝑅𝑖𝑛𝑣⌋ (16)

 𝑊2 = ((𝑅 − 𝑅0) ∗ 𝑑𝑅𝑖𝑛𝑣) − 𝐵𝑖𝑛 (17)

 𝑊1 = 1 − 𝑊2 (18)

For efficiency purposes, in the implemented circuit the

multiplication by the coefficient 𝑑𝑅𝑖𝑛𝑣 was replaced by an

arithmetic left shift due to 𝑑𝑅𝑖𝑛𝑣 being a constant whose value

is a positive power of two (32 = 2^5). The subtraction was

also replaced by simply splitting the bin_0 bus to separate the

integer from the decimal part. This module has a latency of

one cycle due to the buffer on the outputs.

Interpolation Module

The Interpolation module performs the linear

interpolation described by the equations:

𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 = (𝑑𝑎𝑡𝑎1𝑅𝑒 ∗ 𝑊1) + (𝑑𝑎𝑡𝑎2𝑅𝑒

∗ 𝑊2)
(19)

𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 = (𝑑𝑎𝑡𝑎1𝐼𝑚 ∗ 𝑊1) + (𝑑𝑎𝑡𝑎2𝐼𝑚

∗ 𝑊2)
(20)

The interpolation is done between the samples from the

Bin address and the Bin+1 address of the B2 memory, using

the coefficients calculated by the Wbin module.

Filter Module

The Filter module is responsible for calculating the

matched filter values from the distance value received. The

module was built using basic mathematical IP cores, the

CORDIC IP core, a Shift Register, a custom multiplexer and

support cores, like the concatenation IP core. This module can

be divided into three parts: Argument calculator,

Trigonometric stage, and Quadrant normalizer.

The Argument calculator is the circuit responsible for

converting the value of the distance (in meters) received into

the value of an angle (in radians). After the conversion, the

quadrant is stored in a shift register and the angle is rotated to

the first quadrant.

The Trigonometric stage employs the circuit composed by

the CORDIC IP core and it is responsible for calculating the

sine and cosine of the angle received as input. The

configuration of the CORDIC IP core results in an IP core

with a latency of 28 cycles.

The Quadrant normalizer follows the Trigonometric stage

and is responsible for correcting the effects of the angle

rotation described in the first stage. This module was

implemented by providing the sine and cosine values for all

the possible 90 degrees angle rotations (sin(a), -sin(a), cos(a),

-cos(a)) and using the quadrant number to select the correct

option.

Complex Multiplication Module

The MultC module is responsible for performing the

complex multiplication between the samples and the matched

filter. It was implemented using only basic mathematical IP

cores, performing the operations detailed in eq.52 and 53:

𝑃𝑟𝑜𝑑𝑅𝑒 = (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑟𝑒) − (𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) (21)

𝑃𝑟𝑜𝑑𝐼𝑚 = (𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑒 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝐼𝑚) + (𝑆𝑎𝑚𝑝𝑙𝑒𝑖𝑚 ∗ 𝐹𝑖𝑙𝑡𝑒𝑟𝑅𝑒) (22)

Accumulator Module

This module performs the accumulation and stores the

results in the B3 memory for every cycle, with only one

exception pertaining to the last accumulation of a pixel, where

the result is passed to the FIFO in the next module. The

operations performed by this module are detailed in eq.23 and

24:

𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑖

+ 𝑃𝑟𝑜𝑑𝑅𝑒𝑖
; 𝑖 ∈ [0; 511] (23)

9

𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖+1
= 𝐴𝑐𝑐𝑢𝑚𝐼𝑚𝑖

+ 𝑃𝑟𝑜𝑑𝐼𝑚𝑖
 ; 𝑖 ∈ [0; 511] (24)

D. System Control

The accelerator has an enable signal that runs through the

whole Datapath, going from the System control module to the

Accumulator modules. With this signal it is possible to know

if a value stored in a pipeline stage is valid or not. The need

for a control system stems from the existence of an

initialization phase to fill the BRAM modules, because all the

positions of the satellite and all the samples from the first

pulse must be written in the BRAMs before the execution can

start. Also, due to the output values being sent for storage in

bursts, a FIFO had to be added to solve the lack of

synchronization between the AXI DMAs and the

Accumulator modules.

V. RESULTS

A. SNR

The Hardware/Software implementation produced an

image with a SNR value of 99.210 dB. The result is below the

projected SNR value of 100.469 dB by 1.259 dB and below

the threshold of 100dB proposed in the beginning of this work

by 0.79 dB. Figure 7 shows the image taken as the golden

reference and the image formed by the fixed-point

Hardware/Software implementation, respectively.

Figure 7 – Golden reference (left), Output of the final

Hardware/Software implementation (99.21 dB; right)

This difference was not predicted but was expected

considering that the exact implementation of the CORDIC

algorithm in the IP core is hidden to the user and is protected

by Xilinx.

B. Resources
The resources allocated by the final design can be found

in their entirety in the target device. When comparing the

resource allocation with estimations made we can conclude

that the predicted savings made through the word length study

are valid predictions and that the study allowed for some

optimization in that area.

Programmable Logic Resources

Table 13 shows the amount of resources from the PL

system allocated by the design after the implementation phase

performed in Vivado.

Table 13 - Resources used in PL by the whole system

Name LUTs Registers DSPs BRAM

Distance 2292 2807 0 2

Sample 398 356 10 13

Filter 2198 2491 25 0

MultC 0 68 10 0

Accum 219 231 0 14.5

Init 2 2 0 0

Axi DMA 1636 2407 0 3

Axi-Interconnect

(Axi-Stream)
543 650 0 0

Axi-Interconnect

(Axi-Lite)
505 657 0 0

Axi Data FIFO 60 88 0 4

FIFO Transfer

Control
8 20 0 0

Processor System

Reset
16 33 0 0

TOTAL
10438

(59.3 %)

13304

(37.7 %)

55

(68.8 %)

58

(96.7 %)

The rescheduling of the algorithm proved to be one of the

biggest contributions to optimization in the design of the

circuit, by lowering the BRAM resources needed by the

implementation enough to fit the target device. This alteration

reduced the BRAM needed by a factor of 77 times.

CPU

The final design only used one core of the Dual-core ARM

Cortex-A9 CPU.

C. Timing and Latency
The total execution time of the system was 0.96 seconds.

This time was achieved with a working frequency of 140

MHz on the PL clock.

Table 14 shows the latency of the top-level modules of the

system.

Table 14 - Latency of the Top-Level modules

Name Latency (cycles)

Distance 46

Sample 6

Filter 44

MultC 3

Accum 1

TOTAL 100

The timing objective was fulfilled. The total execution

time obtained represents a speedup of 500x over the original

software only implementation, executed in the PS system of

the target device. The pipelined architecture and the

rescheduling of the algorithm allowed the overheads from

10

accessing the external memory to be hidden without

impacting the execution time.

D. Energy Consumption
The energy consumption estimate provided by Vivado

appears in table 15.

Table 15 - Power consumption discriminated by component of the

target device

Component Power (Watts) Power (%)

CPU 1.406 75

Signals 0.129 7

BRAM 0.118 6

Logic 0.101 5

DSP 0.067 4

Clocks 0.064 3

From the results, it can be concluded that the CPU is by far

the most power consuming component used. When relating

the power consumption profile presented in table 15 with the

Hw/Sw partition employed in the final implementation, a

large discrepancy between the CPU’s workload and its

consumption can be found due to this component’s static

consumption.

VI. CONCLUSION

The aim of this work was to design, develop and evaluate

an optimized system to compute the imaging forming

algorithm for a SAR system. The design was developed

around two main ideas: the advantage offered by flexibility of

an FPGA regarding parallel and pipeline architectures and the

advantages offered by the fixed-point format. Both the initial

studies performed on the Backprojection algorithm and their

conclusions are generic enough to be used in the study of

almost every other algorithm, with the exception of the

rescheduling that presents a reasoning very specific to the

characteristics of the algorithm. The results obtained in the

software fixed-point implementations are one more proof that

the methods used today to approximate mathematical

functions can provide a high-quality solution, opening a lot of

opportunities to the adoption of fixed-point architectures in

optimization efforts.

 The fact that the device used in this work is low-end

should emphasise the potential of the SoC FPGA family in

optimization efforts. The energy consumption could be

greatly improved. Due to the Hw/Sw partition present in the

design, the CPU was left with very few instructions to

perform. Furthermore, the instructions that the CPU still

performs are only pertaining the control of the AXI-DMA

blocks and can be easily implemented by a finite state

machine. Floor-planning is outside the scope of this work,

however it could be an effective method to achieve a faster

final circuit. This opinion is based on the high impact of the

Net Delay values in the Total Delay values of the slowest

paths in the circuit.

All these improvements could result in a useful real-time

application in a device with good portability characteristics.

VII. ACKNOWLEDGEMENTS

This thesis is integrated in the FCT project “Synthetic

Aperture Radar Robust Reconfigurable Optimized Computing

Architecture” (SARRROCA, PTDC/EEI-HAC/31819/2017).

References

[1] M. I. Duersch, “Backprojection for Synthetic Aperture Radar,” J.

Phys. A Math. Theor., vol. 44, no. 8, pp. 1689–1699, 2011, doi:

10.1088/1751-8113/44/8/085201.

[2] H. Cruz, R. P. Duarte, and H. Neto, Fault-Tolerant Architecture

for On-board Dual-Core Synthetic-Aperture Radar Imaging,

vol. 93, no. 6. 2006.

[3] Y. K. Chan and V. C. Koo, “An introduction to Synthetic

Aperture Radar (SAR),” Prog. Electromagn. Res. B, vol. 2, pp.

27–60, 2008, doi: 10.2528/pierb07110101.

[4] H. Balzter, “Forest mapping and monitoring with interferometric

synthetic aperture radar (InSAR),” Prog. Phys. Geogr., vol. 25,

no. 2, pp. 159–177, 2001, doi: 10.1191/030913301666986397.

[5] J. Park, P. T. P. Tang, M. Smelyanskiy, D. Kim, and T. Benson,

“Efficient backprojection-based synthetic aperture radar

computation with many-core processors,” Sci. Program., vol.

21, no. 3–4, pp. 165–179, 2013, doi: 10.3233/SPR-130372.

[6] D. Pritsker, “Efficient Global Back-Projection on an FPGA,”

IEEE Natl. Radar Conf. - Proc., vol. 2015-June, no. June, pp.

204–209, 2015, doi: 10.1109/RADAR.2015.7130996.

[7] K. B. Pnnl et al., “PERFECT Benchmark Suite Manual,” vol. 5,

pp. 0–32.

[8] C. Zhang, “Optimizing FPGA-based Accelerator Design for

Deep.pdf,” ACM/SIGDA Int. Symp. Field-Programmable Gate

Arrays(FPGA), pp. 161–170, 2015.

[9] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance

comparison of FPGA, GPU and CPU in image processing,” FPL

09 19th Int. Conf. F. Program. Log. Appl., pp. 126–131, 2009,

doi: 10.1109/FPL.2009.5272532.

[10] Digilent, “Zybo Z7 Board Reference Manual,” Digilent, Inc.,

pp. 1–30, 2017, [Online]. Available: www.store.digilent.com.

[11] P. Belanović and M. Rupp, “Automated floating-point to fixed-

point conversion with the fixify environment,” Proc. Int. Work.

Rapid Syst. Prototyp., pp. 172–178, 2005, doi:

10.1109/rsp.2005.15.

[12] I. Engineering, “Fixed-Point Optimization Utility for C and C+

based Digital Signal Processing Programs,” pp. 197–206, 1995.

[13] C. Shi and R. W. Brodersen, “An automated floating-point to

fixed-point conversion methodology,” ICASSP, IEEE Int. Conf.

Acoust. Speech Signal Process. - Proc., vol. 2, pp. 529–532,

2003, doi: 10.1109/icassp.2003.1202420.

[14] I. Newton and I. Newton, “Historical development of the

newton-raphson method,” vol. 37, no. 4, pp. 531–551, 1995.

[15] K. Turkowski, “Fixed-Point Square Root,” Graph. Gems V, no.

96, pp. 22–24, 1995, doi:10.1016/b978-0-12-543457-7.50011-5.

[16] J. Volder, “The CORDIC computing technique,” Proc. West.

Jt. Comput. Conf. IRE-AIEE-ACM 1959, pp. 257–261, 1959,

doi: 10.1145/1457838.1457886.

11

